Show filters
376 Total Results
Displaying 81-90 of 376
Sort by:
Attacker Value
Unknown

CVE-2020-15202

Disclosure Date: September 25, 2020 (last updated February 22, 2025)
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `Shard` API in TensorFlow expects the last argument to be a function taking two `int64` (i.e., `long long`) arguments. However, there are several places in TensorFlow where a lambda taking `int` or `int32` arguments is being used. In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption. The issue is patched in commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Attacker Value
Unknown

CVE-2020-15207

Disclosure Date: September 25, 2020 (last updated February 22, 2025)
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, to mimic Python's indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds. If the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption. The issue is patched in commit 2d88f470dea2671b430884260f3626b1fe99830a, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Attacker Value
Unknown

CVE-2020-15195

Disclosure Date: September 25, 2020 (last updated February 22, 2025)
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Attacker Value
Unknown

CVE-2020-26088

Disclosure Date: September 24, 2020 (last updated February 22, 2025)
A missing CAP_NET_RAW check in NFC socket creation in net/nfc/rawsock.c in the Linux kernel before 5.8.2 could be used by local attackers to create raw sockets, bypassing security mechanisms, aka CID-26896f01467a.
Attacker Value
Unknown

CVE-2020-25596

Disclosure Date: September 23, 2020 (last updated February 22, 2025)
An issue was discovered in Xen through 4.14.x. x86 PV guest kernels can experience denial of service via SYSENTER. The SYSENTER instruction leaves various state sanitization activities to software. One of Xen's sanitization paths injects a #GP fault, and incorrectly delivers it twice to the guest. This causes the guest kernel to observe a kernel-privilege #GP fault (typically fatal) rather than a user-privilege #GP fault (usually converted into SIGSEGV/etc.). Malicious or buggy userspace can crash the guest kernel, resulting in a VM Denial of Service. All versions of Xen from 3.2 onwards are vulnerable. Only x86 systems are vulnerable. ARM platforms are not vulnerable. Only x86 systems that support the SYSENTER instruction in 64bit mode are vulnerable. This is believed to be Intel, Centaur, and Shanghai CPUs. AMD and Hygon CPUs are not believed to be vulnerable. Only x86 PV guests can exploit the vulnerability. x86 PVH / HVM guests cannot exploit the vulnerability.
Attacker Value
Unknown

CVE-2020-25598

Disclosure Date: September 23, 2020 (last updated February 22, 2025)
An issue was discovered in Xen 4.14.x. There is a missing unlock in the XENMEM_acquire_resource error path. The RCU (Read, Copy, Update) mechanism is a synchronisation primitive. A buggy error path in the XENMEM_acquire_resource exits without releasing an RCU reference, which is conceptually similar to forgetting to unlock a spinlock. A buggy or malicious HVM stubdomain can cause an RCU reference to be leaked. This causes subsequent administration operations, (e.g., CPU offline) to livelock, resulting in a host Denial of Service. The buggy codepath has been present since Xen 4.12. Xen 4.14 and later are vulnerable to the DoS. The side effects are believed to be benign on Xen 4.12 and 4.13, but patches are provided nevertheless. The vulnerability can generally only be exploited by x86 HVM VMs, as these are generally the only type of VM that have a Qemu stubdomain. x86 PV and PVH domains, as well as ARM VMs, typically don't use a stubdomain. Only VMs using HVM stubdomains can exploit th…
Attacker Value
Unknown

CVE-2020-25602

Disclosure Date: September 23, 2020 (last updated February 22, 2025)
An issue was discovered in Xen through 4.14.x. An x86 PV guest can trigger a host OS crash when handling guest access to MSR_MISC_ENABLE. When a guest accesses certain Model Specific Registers, Xen first reads the value from hardware to use as the basis for auditing the guest access. For the MISC_ENABLE MSR, which is an Intel specific MSR, this MSR read is performed without error handling for a #GP fault, which is the consequence of trying to read this MSR on non-Intel hardware. A buggy or malicious PV guest administrator can crash Xen, resulting in a host Denial of Service. Only x86 systems are vulnerable. ARM systems are not vulnerable. Only Xen versions 4.11 and onwards are vulnerable. 4.10 and earlier are not vulnerable. Only x86 systems that do not implement the MISC_ENABLE MSR (0x1a0) are vulnerable. AMD and Hygon systems do not implement this MSR and are vulnerable. Intel systems do implement this MSR and are not vulnerable. Other manufacturers have not been checked. Only x86 P…
Attacker Value
Unknown

CVE-2020-25603

Disclosure Date: September 23, 2020 (last updated February 22, 2025)
An issue was discovered in Xen through 4.14.x. There are missing memory barriers when accessing/allocating an event channel. Event channels control structures can be accessed lockless as long as the port is considered to be valid. Such a sequence is missing an appropriate memory barrier (e.g., smp_*mb()) to prevent both the compiler and CPU from re-ordering access. A malicious guest may be able to cause a hypervisor crash resulting in a Denial of Service (DoS). Information leak and privilege escalation cannot be excluded. Systems running all versions of Xen are affected. Whether a system is vulnerable will depend on the CPU and compiler used to build Xen. For all systems, the presence and the scope of the vulnerability depend on the precise re-ordering performed by the compiler used to build Xen. We have not been able to survey compilers; consequently we cannot say which compiler(s) might produce vulnerable code (with which code generation options). GCC documentation clearly suggests …
Attacker Value
Unknown

CVE-2020-25599

Disclosure Date: September 23, 2020 (last updated February 22, 2025)
An issue was discovered in Xen through 4.14.x. There are evtchn_reset() race conditions. Uses of EVTCHNOP_reset (potentially by a guest on itself) or XEN_DOMCTL_soft_reset (by itself covered by XSA-77) can lead to the violation of various internal assumptions. This may lead to out of bounds memory accesses or triggering of bug checks. In particular, x86 PV guests may be able to elevate their privilege to that of the host. Host and guest crashes are also possible, leading to a Denial of Service (DoS). Information leaks cannot be ruled out. All Xen versions from 4.5 onwards are vulnerable. Xen versions 4.4 and earlier are not vulnerable.
Attacker Value
Unknown

CVE-2020-25604

Disclosure Date: September 23, 2020 (last updated February 22, 2025)
An issue was discovered in Xen through 4.14.x. There is a race condition when migrating timers between x86 HVM vCPUs. When migrating timers of x86 HVM guests between its vCPUs, the locking model used allows for a second vCPU of the same guest (also operating on the timers) to release a lock that it didn't acquire. The most likely effect of the issue is a hang or crash of the hypervisor, i.e., a Denial of Service (DoS). All versions of Xen are affected. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only x86 HVM guests can leverage the vulnerability. x86 PV and PVH cannot leverage the vulnerability. Only guests with more than one vCPU can exploit the vulnerability.