Show filters
555 Total Results
Displaying 21-30 of 555
Sort by:
Attacker Value
Unknown

CVE-2023-46839

Disclosure Date: March 20, 2024 (last updated April 01, 2024)
PCI devices can make use of a functionality called phantom functions, that when enabled allows the device to generate requests using the IDs of functions that are otherwise unpopulated. This allows a device to extend the number of outstanding requests. Such phantom functions need an IOMMU context setup, but failure to setup the context is not fatal when the device is assigned. Not failing device assignment when such failure happens can lead to the primary device being assigned to a guest, while some of the phantom functions are assigned to a different domain.
0
Attacker Value
Unknown

CVE-2024-2193

Disclosure Date: March 15, 2024 (last updated April 01, 2024)
A Speculative Race Condition (SRC) vulnerability that impacts modern CPU architectures supporting speculative execution (related to Spectre V1) has been disclosed. An unauthenticated attacker can exploit this vulnerability to disclose arbitrary data from the CPU using race conditions to access the speculative executable code paths.
0
Attacker Value
Unknown

CVE-2023-46837

Disclosure Date: January 05, 2024 (last updated February 14, 2025)
Arm provides multiple helpers to clean & invalidate the cache for a given region. This is, for instance, used when allocating guest memory to ensure any writes (such as the ones during scrubbing) have reached memory before handing over the page to a guest. Unfortunately, the arithmetics in the helpers can overflow and would then result to skip the cache cleaning/invalidation. Therefore there is no guarantee when all the writes will reach the memory. This undefined behavior was meant to be addressed by XSA-437, but the approach was not sufficient.
Attacker Value
Unknown

CVE-2023-46836

Disclosure Date: January 05, 2024 (last updated January 12, 2024)
The fixes for XSA-422 (Branch Type Confusion) and XSA-434 (Speculative Return Stack Overflow) are not IRQ-safe. It was believed that the mitigations always operated in contexts with IRQs disabled. However, the original XSA-254 fix for Meltdown (XPTI) deliberately left interrupts enabled on two entry paths; one unconditionally, and one conditionally on whether XPTI was active. As BTC/SRSO and Meltdown affect different CPU vendors, the mitigations are not active together by default. Therefore, there is a race condition whereby a malicious PV guest can bypass BTC/SRSO protections and launch a BTC/SRSO attack against Xen.
Attacker Value
Unknown

CVE-2023-46835

Disclosure Date: January 05, 2024 (last updated January 12, 2024)
The current setup of the quarantine page tables assumes that the quarantine domain (dom_io) has been initialized with an address width of DEFAULT_DOMAIN_ADDRESS_WIDTH (48) and hence 4 page table levels. However dom_io being a PV domain gets the AMD-Vi IOMMU page tables levels based on the maximum (hot pluggable) RAM address, and hence on systems with no RAM above the 512GB mark only 3 page-table levels are configured in the IOMMU. On systems without RAM above the 512GB boundary amd_iommu_quarantine_init() will setup page tables for the scratch page with 4 levels, while the IOMMU will be configured to use 3 levels only, resulting in the last page table directory (PDE) effectively becoming a page table entry (PTE), and hence a device in quarantine mode gaining write access to the page destined to be a PDE. Due to this page table level mismatch, the sink page the device gets read/write access to is no longer cleared between device assignment, possibly leading to data leaks.
Attacker Value
Unknown

CVE-2023-34328

Disclosure Date: January 05, 2024 (last updated January 12, 2024)
[This CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] AMD CPUs since ~2014 have extensions to normal x86 debugging functionality. Xen supports guests using these extensions. Unfortunately there are errors in Xen's handling of the guest state, leading to denials of service. 1) CVE-2023-34327 - An HVM vCPU can end up operating in the context of a previous vCPUs debug mask state. 2) CVE-2023-34328 - A PV vCPU can place a breakpoint over the live GDT. This allows the PV vCPU to exploit XSA-156 / CVE-2015-8104 and lock up the CPU entirely.
Attacker Value
Unknown

CVE-2023-34327

Disclosure Date: January 05, 2024 (last updated January 12, 2024)
[This CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] AMD CPUs since ~2014 have extensions to normal x86 debugging functionality. Xen supports guests using these extensions. Unfortunately there are errors in Xen's handling of the guest state, leading to denials of service. 1) CVE-2023-34327 - An HVM vCPU can end up operating in the context of a previous vCPUs debug mask state. 2) CVE-2023-34328 - A PV vCPU can place a breakpoint over the live GDT. This allows the PV vCPU to exploit XSA-156 / CVE-2015-8104 and lock up the CPU entirely.
Attacker Value
Unknown

CVE-2023-34326

Disclosure Date: January 05, 2024 (last updated January 12, 2024)
The caching invalidation guidelines from the AMD-Vi specification (48882—Rev 3.07-PUB—Oct 2022) is incorrect on some hardware, as devices will malfunction (see stale DMA mappings) if some fields of the DTE are updated but the IOMMU TLB is not flushed. Such stale DMA mappings can point to memory ranges not owned by the guest, thus allowing access to unindented memory regions.
Attacker Value
Unknown

CVE-2023-34325

Disclosure Date: January 05, 2024 (last updated January 12, 2024)
[This CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] libfsimage contains parsing code for several filesystems, most of them based on grub-legacy code. libfsimage is used by pygrub to inspect guest disks. Pygrub runs as the same user as the toolstack (root in a priviledged domain). At least one issue has been reported to the Xen Security Team that allows an attacker to trigger a stack buffer overflow in libfsimage. After further analisys the Xen Security Team is no longer confident in the suitability of libfsimage when run against guest controlled input with super user priviledges. In order to not affect current deployments that rely on pygrub patches are provided in the resolution section of the advisory that allow running pygrub in deprivileged mode. CVE-2023-4949 refers to the original issue in the upstream grub project ("An attacker with local access to a system (either through a disk or external dr…
Attacker Value
Unknown

CVE-2023-34324

Disclosure Date: January 05, 2024 (last updated February 14, 2025)
Closing of an event channel in the Linux kernel can result in a deadlock. This happens when the close is being performed in parallel to an unrelated Xen console action and the handling of a Xen console interrupt in an unprivileged guest. The closing of an event channel is e.g. triggered by removal of a paravirtual device on the other side. As this action will cause console messages to be issued on the other side quite often, the chance of triggering the deadlock is not neglectable. Note that 32-bit Arm-guests are not affected, as the 32-bit Linux kernel on Arm doesn't use queued-RW-locks, which are required to trigger the issue (on Arm32 a waiting writer doesn't block further readers to get the lock).