Show filters
75 Total Results
Displaying 1-10 of 75
Sort by:
Attacker Value
Unknown
CVE-2024-46830
Disclosure Date: September 27, 2024 (last updated January 05, 2025)
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Acquire kvm->srcu when handling KVM_SET_VCPU_EVENTS
Grab kvm->srcu when processing KVM_SET_VCPU_EVENTS, as KVM will forcibly
leave nested VMX/SVM if SMM mode is being toggled, and leaving nested VMX
reads guest memory.
Note, kvm_vcpu_ioctl_x86_set_vcpu_events() can also be called from KVM_RUN
via sync_regs(), which already holds SRCU. I.e. trying to precisely use
kvm_vcpu_srcu_read_lock() around the problematic SMM code would cause
problems. Acquiring SRCU isn't all that expensive, so for simplicity,
grab it unconditionally for KVM_SET_VCPU_EVENTS.
=============================
WARNING: suspicious RCU usage
6.10.0-rc7-332d2c1d713e-next-vm #552 Not tainted
-----------------------------
include/linux/kvm_host.h:1027 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by repro/1071:
#0: ffff88811e424430 (&vcp…
0
Attacker Value
Unknown
CVE-2022-48783
Disclosure Date: July 16, 2024 (last updated August 22, 2024)
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: lantiq_gswip: fix use after free in gswip_remove()
of_node_put(priv->ds->slave_mii_bus->dev.of_node) should be
done before mdiobus_free(priv->ds->slave_mii_bus).
0
Attacker Value
Unknown
CVE-2021-47615
Disclosure Date: June 19, 2024 (last updated December 19, 2024)
Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
0
Attacker Value
Unknown
CVE-2021-47613
Disclosure Date: June 19, 2024 (last updated October 31, 2024)
In the Linux kernel, the following vulnerability has been resolved:
i2c: virtio: fix completion handling
The driver currently assumes that the notify callback is only received
when the device is done with all the queued buffers.
However, this is not true, since the notify callback could be called
without any of the queued buffers being completed (for example, with
virtio-pci and shared interrupts) or with only some of the buffers being
completed (since the driver makes them available to the device in
multiple separate virtqueue_add_sgs() calls).
This can lead to incorrect data on the I2C bus or memory corruption in
the guest if the device operates on buffers which are have been freed by
the driver. (The WARN_ON in the driver is also triggered.)
BUG kmalloc-128 (Tainted: G W ): Poison overwritten
First byte 0x0 instead of 0x6b
Allocated in i2cdev_ioctl_rdwr+0x9d/0x1de age=243 cpu=0 pid=28
memdup_user+0x2e/0xbd
i2cdev_ioctl_rdwr+0x9d/0x1de
i2cdev_ioctl+0x247…
0
Attacker Value
Unknown
CVE-2021-47611
Disclosure Date: June 19, 2024 (last updated October 31, 2024)
In the Linux kernel, the following vulnerability has been resolved:
mac80211: validate extended element ID is present
Before attempting to parse an extended element, verify that
the extended element ID is present.
0
Attacker Value
Unknown
CVE-2021-47609
Disclosure Date: June 19, 2024 (last updated October 31, 2024)
In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scpi: Fix string overflow in SCPI genpd driver
Without the bound checks for scpi_pd->name, it could result in the buffer
overflow when copying the SCPI device name from the corresponding device
tree node as the name string is set at maximum size of 30.
Let us fix it by using devm_kasprintf so that the string buffer is
allocated dynamically.
0
Attacker Value
Unknown
CVE-2021-47608
Disclosure Date: June 19, 2024 (last updated November 01, 2024)
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix kernel address leakage in atomic fetch
The change in commit 37086bfdc737 ("bpf: Propagate stack bounds to registers
in atomics w/ BPF_FETCH") around check_mem_access() handling is buggy since
this would allow for unprivileged users to leak kernel pointers. For example,
an atomic fetch/and with -1 on a stack destination which holds a spilled
pointer will migrate the spilled register type into a scalar, which can then
be exported out of the program (since scalar != pointer) by dumping it into
a map value.
The original implementation of XADD was preventing this situation by using
a double call to check_mem_access() one with BPF_READ and a subsequent one
with BPF_WRITE, in both cases passing -1 as a placeholder value instead of
register as per XADD semantics since it didn't contain a value fetch. The
BPF_READ also included a check in check_stack_read_fixed_off() which rejects
the program if the stack slot is o…
0
Attacker Value
Unknown
CVE-2021-47607
Disclosure Date: June 19, 2024 (last updated November 01, 2024)
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix kernel address leakage in atomic cmpxchg's r0 aux reg
The implementation of BPF_CMPXCHG on a high level has the following parameters:
.-[old-val] .-[new-val]
BPF_R0 = cmpxchg{32,64}(DST_REG + insn->off, BPF_R0, SRC_REG)
`-[mem-loc] `-[old-val]
Given a BPF insn can only have two registers (dst, src), the R0 is fixed and
used as an auxilliary register for input (old value) as well as output (returning
old value from memory location). While the verifier performs a number of safety
checks, it misses to reject unprivileged programs where R0 contains a pointer as
old value.
Through brute-forcing it takes about ~16sec on my machine to leak a kernel pointer
with BPF_CMPXCHG. The PoC is basically probing for kernel addresses by storing the
guessed address into the map slot as a scalar, and using the map value pointer as
R0 while SRC_R…
0
Attacker Value
Unknown
CVE-2021-47606
Disclosure Date: June 19, 2024 (last updated November 01, 2024)
In the Linux kernel, the following vulnerability has been resolved:
net: netlink: af_netlink: Prevent empty skb by adding a check on len.
Adding a check on len parameter to avoid empty skb. This prevents a
division error in netem_enqueue function which is caused when skb->len=0
and skb->data_len=0 in the randomized corruption step as shown below.
skb->data[prandom_u32() % skb_headlen(skb)] ^= 1<<(prandom_u32() % 8);
Crash Report:
[ 343.170349] netdevsim netdevsim0 netdevsim3: set [1, 0] type 2 family
0 port 6081 - 0
[ 343.216110] netem: version 1.3
[ 343.235841] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 343.236680] CPU: 3 PID: 4288 Comm: reproducer Not tainted 5.16.0-rc1+
[ 343.237569] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 1.11.0-2.el7 04/01/2014
[ 343.238707] RIP: 0010:netem_enqueue+0x1590/0x33c0 [sch_netem]
[ 343.239499] Code: 89 85 58 ff ff ff e8 5f 5d e9 d3 48 8b b5 48 ff ff
ff 8b 8d 50 ff ff ff 8b 85 58 ff ff ff 48 8b bd 70 ff ff ff 31 d2 …
0
Attacker Value
Unknown
CVE-2021-47605
Disclosure Date: June 19, 2024 (last updated November 01, 2024)
In the Linux kernel, the following vulnerability has been resolved:
vduse: fix memory corruption in vduse_dev_ioctl()
The "config.offset" comes from the user. There needs to a check to
prevent it being out of bounds. The "config.offset" and
"dev->config_size" variables are both type u32. So if the offset if
out of bounds then the "dev->config_size - config.offset" subtraction
results in a very high u32 value. The out of bounds offset can result
in memory corruption.
0