Show filters
12 Total Results
Displaying 1-10 of 12
Sort by:
Attacker Value
Unknown

CVE-2020-1971

Disclosure Date: December 08, 2020 (last updated November 08, 2023)
The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious c…
Attacker Value
Unknown

CVE-2019-17566

Disclosure Date: November 12, 2020 (last updated November 08, 2023)
Apache Batik is vulnerable to server-side request forgery, caused by improper input validation by the "xlink:href" attributes. By using a specially-crafted argument, an attacker could exploit this vulnerability to cause the underlying server to make arbitrary GET requests.
Attacker Value
Unknown

CVE-2020-11979

Disclosure Date: October 01, 2020 (last updated November 08, 2023)
As mitigation for CVE-2020-1945 Apache Ant 1.10.8 changed the permissions of temporary files it created so that only the current user was allowed to access them. Unfortunately the fixcrlf task deleted the temporary file and created a new one without said protection, effectively nullifying the effort. This would still allow an attacker to inject modified source files into the build process.
Attacker Value
Unknown

CVE-2019-1559

Disclosure Date: February 26, 2019 (last updated November 08, 2023)
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).
Attacker Value
Unknown

CVE-2018-5407

Disclosure Date: November 15, 2018 (last updated November 08, 2023)
Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'.
Attacker Value
Unknown

CVE-2018-0734

Disclosure Date: October 30, 2018 (last updated November 08, 2023)
The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p).
Attacker Value
Unknown

CVE-2018-0735

Disclosure Date: October 29, 2018 (last updated November 08, 2023)
The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).
Attacker Value
Unknown

CVE-2018-1000613

Disclosure Date: July 09, 2018 (last updated November 08, 2023)
Legion of the Bouncy Castle Legion of the Bouncy Castle Java Cryptography APIs 1.58 up to but not including 1.60 contains a CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') vulnerability in XMSS/XMSS^MT private key deserialization that can result in Deserializing an XMSS/XMSS^MT private key can result in the execution of unexpected code. This attack appear to be exploitable via A handcrafted private key can include references to unexpected classes which will be picked up from the class path for the executing application. This vulnerability appears to have been fixed in 1.60 and later.
Attacker Value
Unknown

CVE-2018-1000180

Disclosure Date: June 05, 2018 (last updated November 08, 2023)
Bouncy Castle BC 1.54 - 1.59, BC-FJA 1.0.0, BC-FJA 1.0.1 and earlier have a flaw in the Low-level interface to RSA key pair generator, specifically RSA Key Pairs generated in low-level API with added certainty may have less M-R tests than expected. This appears to be fixed in versions BC 1.60 beta 4 and later, BC-FJA 1.0.2 and later.
0
Attacker Value
Unknown

CVE-2017-3601

Disclosure Date: April 24, 2017 (last updated November 26, 2024)
Vulnerability in the Oracle API Gateway component of Oracle Fusion Middleware (subcomponent: Oracle API Gateway). The supported version that is affected is 11.1.2.4.0. Easily "exploitable" vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle API Gateway. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle API Gateway accessible data as well as unauthorized access to critical data or complete access to all Oracle API Gateway accessible data. CVSS 3.0 Base Score 8.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N).
0