Show filters
6,560 Total Results
Displaying 551-560 of 6,560
Sort by:
Attacker Value
Unknown
CVE-2024-50196
Disclosure Date: November 08, 2024 (last updated February 27, 2025)
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: ocelot: fix system hang on level based interrupts
The current implementation only calls chained_irq_enter() and
chained_irq_exit() if it detects pending interrupts.
```
for (i = 0; i < info->stride; i++) {
uregmap_read(info->map, id_reg + 4 * i, ®);
if (!reg)
continue;
chained_irq_enter(parent_chip, desc);
```
However, in case of GPIO pin configured in level mode and the parent
controller configured in edge mode, GPIO interrupt might be lowered by the
hardware. In the result, if the interrupt is short enough, the parent
interrupt is still pending while the GPIO interrupt is cleared;
chained_irq_enter() never gets called and the system hangs trying to
service the parent interrupt.
Moving chained_irq_enter() and chained_irq_exit() outside the for loop
ensures that they are called even when GPIO interrupt is lowered by the
hardware.
The similar code with chained_irq_enter() / chained_irq_exit() fu…
0
Attacker Value
Unknown
CVE-2024-50195
Disclosure Date: November 08, 2024 (last updated February 27, 2025)
In the Linux kernel, the following vulnerability has been resolved:
posix-clock: Fix missing timespec64 check in pc_clock_settime()
As Andrew pointed out, it will make sense that the PTP core
checked timespec64 struct's tv_sec and tv_nsec range before calling
ptp->info->settime64().
As the man manual of clock_settime() said, if tp.tv_sec is negative or
tp.tv_nsec is outside the range [0..999,999,999], it should return EINVAL,
which include dynamic clocks which handles PTP clock, and the condition is
consistent with timespec64_valid(). As Thomas suggested, timespec64_valid()
only check the timespec is valid, but not ensure that the time is
in a valid range, so check it ahead using timespec64_valid_strict()
in pc_clock_settime() and return -EINVAL if not valid.
There are some drivers that use tp->tv_sec and tp->tv_nsec directly to
write registers without validity checks and assume that the higher layer
has checked it, which is dangerous and will benefit from this, such as
hclge_ptp_…
0
Attacker Value
Unknown
CVE-2024-50194
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
arm64: probes: Fix uprobes for big-endian kernels
The arm64 uprobes code is broken for big-endian kernels as it doesn't
convert the in-memory instruction encoding (which is always
little-endian) into the kernel's native endianness before analyzing and
simulating instructions. This may result in a few distinct problems:
* The kernel may may erroneously reject probing an instruction which can
safely be probed.
* The kernel may erroneously erroneously permit stepping an
instruction out-of-line when that instruction cannot be stepped
out-of-line safely.
* The kernel may erroneously simulate instruction incorrectly dur to
interpretting the byte-swapped encoding.
The endianness mismatch isn't caught by the compiler or sparse because:
* The arch_uprobe::{insn,ixol} fields are encoded as arrays of u8, so
the compiler and sparse have no idea these contain a little-endian
32-bit value. The core uprobes code p…
0
Attacker Value
Unknown
CVE-2024-50193
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
x86/entry_32: Clear CPU buffers after register restore in NMI return
CPU buffers are currently cleared after call to exc_nmi, but before
register state is restored. This may be okay for MDS mitigation but not for
RDFS. Because RDFS mitigation requires CPU buffers to be cleared when
registers don't have any sensitive data.
Move CLEAR_CPU_BUFFERS after RESTORE_ALL_NMI.
0
Attacker Value
Unknown
CVE-2024-50192
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v4: Don't allow a VMOVP on a dying VPE
Kunkun Jiang reported that there is a small window of opportunity for
userspace to force a change of affinity for a VPE while the VPE has already
been unmapped, but the corresponding doorbell interrupt still visible in
/proc/irq/.
Plug the race by checking the value of vmapp_count, which tracks whether
the VPE is mapped ot not, and returning an error in this case.
This involves making vmapp_count common to both GICv4.1 and its v4.0
ancestor.
0
Attacker Value
Unknown
CVE-2024-50191
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set SB_RDONLY after filesystem errors
When the filesystem is mounted with errors=remount-ro, we were setting
SB_RDONLY flag to stop all filesystem modifications. We knew this misses
proper locking (sb->s_umount) and does not go through proper filesystem
remount procedure but it has been the way this worked since early ext2
days and it was good enough for catastrophic situation damage
mitigation. Recently, syzbot has found a way (see link) to trigger
warnings in filesystem freezing because the code got confused by
SB_RDONLY changing under its hands. Since these days we set
EXT4_FLAGS_SHUTDOWN on the superblock which is enough to stop all
filesystem modifications, modifying SB_RDONLY shouldn't be needed. So
stop doing that.
0
Attacker Value
Unknown
CVE-2024-50190
Disclosure Date: November 08, 2024 (last updated February 27, 2025)
In the Linux kernel, the following vulnerability has been resolved:
ice: fix memleak in ice_init_tx_topology()
Fix leak of the FW blob (DDP pkg).
Make ice_cfg_tx_topo() const-correct, so ice_init_tx_topology() can avoid
copying whole FW blob. Copy just the topology section, and only when
needed. Reuse the buffer allocated for the read of the current topology.
This was found by kmemleak, with the following trace for each PF:
[<ffffffff8761044d>] kmemdup_noprof+0x1d/0x50
[<ffffffffc0a0a480>] ice_init_ddp_config+0x100/0x220 [ice]
[<ffffffffc0a0da7f>] ice_init_dev+0x6f/0x200 [ice]
[<ffffffffc0a0dc49>] ice_init+0x29/0x560 [ice]
[<ffffffffc0a10c1d>] ice_probe+0x21d/0x310 [ice]
Constify ice_cfg_tx_topo() @buf parameter.
This cascades further down to few more functions.
0
Attacker Value
Unknown
CVE-2024-50189
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
HID: amd_sfh: Switch to device-managed dmam_alloc_coherent()
Using the device-managed version allows to simplify clean-up in probe()
error path.
Additionally, this device-managed ensures proper cleanup, which helps to
resolve memory errors, page faults, btrfs going read-only, and btrfs
disk corruption.
0
Attacker Value
Unknown
CVE-2024-50188
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
net: phy: dp83869: fix memory corruption when enabling fiber
When configuring the fiber port, the DP83869 PHY driver incorrectly
calls linkmode_set_bit() with a bit mask (1 << 10) rather than a bit
number (10). This corrupts some other memory location -- in case of
arm64 the priv pointer in the same structure.
Since the advertising flags are updated from supported at the end of the
function the incorrect line isn't needed at all and can be removed.
0
Attacker Value
Unknown
CVE-2024-50187
Disclosure Date: November 08, 2024 (last updated December 21, 2024)
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: Stop the active perfmon before being destroyed
Upon closing the file descriptor, the active performance monitor is not
stopped. Although all perfmons are destroyed in `vc4_perfmon_close_file()`,
the active performance monitor's pointer (`vc4->active_perfmon`) is still
retained.
If we open a new file descriptor and submit a few jobs with performance
monitors, the driver will attempt to stop the active performance monitor
using the stale pointer in `vc4->active_perfmon`. However, this pointer
is no longer valid because the previous process has already terminated,
and all performance monitors associated with it have been destroyed and
freed.
To fix this, when the active performance monitor belongs to a given
process, explicitly stop it before destroying and freeing it.
0