Show filters
213 Total Results
Displaying 41-50 of 213
Sort by:
Attacker Value
Unknown

CVE-2019-14835

Disclosure Date: September 17, 2019 (last updated December 16, 2023)
A buffer overflow flaw was found, in versions from 2.6.34 to 5.2.x, in the way Linux kernel's vhost functionality that translates virtqueue buffers to IOVs, logged the buffer descriptors during migration. A privileged guest user able to pass descriptors with invalid length to the host when migration is underway, could use this flaw to increase their privileges on the host.
Attacker Value
Unknown

CVE-2019-16335

Disclosure Date: September 15, 2019 (last updated November 08, 2023)
A Polymorphic Typing issue was discovered in FasterXML jackson-databind before 2.9.10. It is related to com.zaxxer.hikari.HikariDataSource. This is a different vulnerability than CVE-2019-14540.
Attacker Value
Unknown

CVE-2019-14540

Disclosure Date: September 15, 2019 (last updated November 08, 2023)
A Polymorphic Typing issue was discovered in FasterXML jackson-databind before 2.9.10. It is related to com.zaxxer.hikari.HikariConfig.
Attacker Value
Unknown

CVE-2019-10086

Disclosure Date: August 20, 2019 (last updated November 08, 2023)
In Apache Commons Beanutils 1.9.2, a special BeanIntrospector class was added which allows suppressing the ability for an attacker to access the classloader via the class property available on all Java objects. We, however were not using this by default characteristic of the PropertyUtilsBean.
Attacker Value
Unknown

CVE-2019-9515

Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
Attacker Value
Unknown

Some HTTP/2 implementations are vulnerable to a header leak, potentially leadin…

Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
Attacker Value
Unknown

CVE-2019-9514

Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
Attacker Value
Unknown

CVE-2019-9513

Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
Attacker Value
Unknown

CVE-2019-9518

Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
Attacker Value
Unknown

CVE-2019-9511

Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.