Show filters
35 Total Results
Displaying 11-20 of 35
Sort by:
Attacker Value
Unknown
CVE-2021-4048
Disclosure Date: December 08, 2021 (last updated October 07, 2023)
An out-of-bounds read flaw was found in the CLARRV, DLARRV, SLARRV, and ZLARRV functions in lapack through version 3.10.0, as also used in OpenBLAS before version 0.3.18. Specially crafted inputs passed to these functions could cause an application using lapack to crash or possibly disclose portions of its memory.
0
Attacker Value
Unknown
CVE-2020-27781
Disclosure Date: December 18, 2020 (last updated February 22, 2025)
User credentials can be manipulated and stolen by Native CephFS consumers of OpenStack Manila, resulting in potential privilege escalation. An Open Stack Manila user can request access to a share to an arbitrary cephx user, including existing users. The access key is retrieved via the interface drivers. Then, all users of the requesting OpenStack project can view the access key. This enables the attacker to target any resource that the user has access to. This can be done to even "admin" users, compromising the ceph administrator. This flaw affects Ceph versions prior to 14.2.16, 15.x prior to 15.2.8, and 16.x prior to 16.2.0.
0
Attacker Value
Unknown
CVE-2020-10763
Disclosure Date: November 24, 2020 (last updated February 22, 2025)
An information-disclosure flaw was found in the way Heketi before 10.1.0 logs sensitive information. This flaw allows an attacker with local access to the Heketi server to read potentially sensitive information such as gluster-block passwords.
0
Attacker Value
Unknown
CVE-2020-1760
Disclosure Date: April 23, 2020 (last updated February 21, 2025)
A flaw was found in the Ceph Object Gateway, where it supports request sent by an anonymous user in Amazon S3. This flaw could lead to potential XSS attacks due to the lack of proper neutralization of untrusted input.
0
Attacker Value
Unknown
CVE-2019-10219
Disclosure Date: November 08, 2019 (last updated November 08, 2023)
A vulnerability was found in Hibernate-Validator. The SafeHtml validator annotation fails to properly sanitize payloads consisting of potentially malicious code in HTML comments and instructions. This vulnerability can result in an XSS attack.
0
Attacker Value
Unknown
CVE-2019-9515
Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
0
Attacker Value
Unknown
Some HTTP/2 implementations are vulnerable to a header leak, potentially leadin…
Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
0
Attacker Value
Unknown
CVE-2019-9514
Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
0
Attacker Value
Unknown
CVE-2019-9513
Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
0
Attacker Value
Unknown
CVE-2019-9518
Disclosure Date: August 13, 2019 (last updated January 15, 2025)
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
0