Show filters
97 Total Results
Displaying 11-20 of 97
Sort by:
Attacker Value
Unknown
CVE-2024-36903
Disclosure Date: May 30, 2024 (last updated February 04, 2025)
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 ("ipv4: Fix uninit-value access in
__ip_make_skb()") for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6->flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access.
0
Attacker Value
Unknown
CVE-2024-36899
Disclosure Date: May 30, 2024 (last updated February 02, 2025)
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Fix use after free in lineinfo_changed_notify
The use-after-free issue occurs as follows: when the GPIO chip device file
is being closed by invoking gpio_chrdev_release(), watched_lines is freed
by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier
chain failed due to waiting write rwsem. Additionally, one of the GPIO
chip's lines is also in the release process and holds the notifier chain's
read rwsem. Consequently, a race condition leads to the use-after-free of
watched_lines.
Here is the typical stack when issue happened:
[free]
gpio_chrdev_release()
--> bitmap_free(cdev->watched_lines) <-- freed
--> blocking_notifier_chain_unregister()
--> down_write(&nh->rwsem) <-- waiting rwsem
--> __down_write_common()
--> rwsem_down_write_slowpath()
--> schedule_preempt_disabled()
…
0
Attacker Value
Unknown
CVE-2024-36882
Disclosure Date: May 30, 2024 (last updated January 13, 2025)
In the Linux kernel, the following vulnerability has been resolved:
mm: use memalloc_nofs_save() in page_cache_ra_order()
See commit f2c817bed58d ("mm: use memalloc_nofs_save in readahead path"),
ensure that page_cache_ra_order() do not attempt to reclaim file-backed
pages too, or it leads to a deadlock, found issue when test ext4 large
folio.
INFO: task DataXceiver for:7494 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:DataXceiver for state:D stack:0 pid:7494 ppid:1 flags:0x00000200
Call trace:
__switch_to+0x14c/0x240
__schedule+0x82c/0xdd0
schedule+0x58/0xf0
io_schedule+0x24/0xa0
__folio_lock+0x130/0x300
migrate_pages_batch+0x378/0x918
migrate_pages+0x350/0x700
compact_zone+0x63c/0xb38
compact_zone_order+0xc0/0x118
try_to_compact_pages+0xb0/0x280
__alloc_pages_direct_compact+0x98/0x248
__alloc_pages+0x510/0x1110
alloc_pages+0x9c/0x130
folio_alloc+0x20/0x78
filemap_alloc…
0
Attacker Value
Unknown
CVE-2024-36012
Disclosure Date: May 23, 2024 (last updated January 12, 2025)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: msft: fix slab-use-after-free in msft_do_close()
Tying the msft->data lifetime to hdev by freeing it in
hci_release_dev() to fix the following case:
[use]
msft_do_close()
msft = hdev->msft_data;
if (!msft) ...(1) <- passed.
return;
mutex_lock(&msft->filter_lock); ...(4) <- used after freed.
[free]
msft_unregister()
msft = hdev->msft_data;
hdev->msft_data = NULL; ...(2)
kfree(msft); ...(3) <- msft is freed.
==================================================================
BUG: KASAN: slab-use-after-free in __mutex_lock_common
kernel/locking/mutex.c:587 [inline]
BUG: KASAN: slab-use-after-free in __mutex_lock+0x8f/0xc30
kernel/locking/mutex.c:752
Read of size 8 at addr ffff888106cbbca8 by task kworker/u5:2/309
0
Attacker Value
Unknown
CVE-2024-36011
Disclosure Date: May 23, 2024 (last updated January 12, 2025)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: HCI: Fix potential null-ptr-deref
Fix potential null-ptr-deref in hci_le_big_sync_established_evt().
0
Attacker Value
Unknown
CVE-2024-36003
Disclosure Date: May 20, 2024 (last updated February 04, 2025)
In the Linux kernel, the following vulnerability has been resolved:
ice: fix LAG and VF lock dependency in ice_reset_vf()
9f74a3dfcf83 ("ice: Fix VF Reset paths when interface in a failed over
aggregate"), the ice driver has acquired the LAG mutex in ice_reset_vf().
The commit placed this lock acquisition just prior to the acquisition of
the VF configuration lock.
If ice_reset_vf() acquires the configuration lock via the ICE_VF_RESET_LOCK
flag, this could deadlock with ice_vc_cfg_qs_msg() because it always
acquires the locks in the order of the VF configuration lock and then the
LAG mutex.
Lockdep reports this violation almost immediately on creating and then
removing 2 VF:
======================================================
WARNING: possible circular locking dependency detected
6.8.0-rc6 #54 Tainted: G W O
------------------------------------------------------
kworker/60:3/6771 is trying to acquire lock:
ff40d43e099380a0 (&vf->cfg_lock){+.+.}-{3:3}, at: ice_reset_vf+0…
0
Attacker Value
Unknown
CVE-2024-35998
Disclosure Date: May 20, 2024 (last updated January 12, 2025)
In the Linux kernel, the following vulnerability has been resolved:
smb3: fix lock ordering potential deadlock in cifs_sync_mid_result
Coverity spotted that the cifs_sync_mid_result function could deadlock
"Thread deadlock (ORDER_REVERSAL) lock_order: Calling spin_lock acquires
lock TCP_Server_Info.srv_lock while holding lock TCP_Server_Info.mid_lock"
Addresses-Coverity: 1590401 ("Thread deadlock (ORDER_REVERSAL)")
0
Attacker Value
Unknown
CVE-2024-35985
Disclosure Date: May 20, 2024 (last updated January 17, 2025)
In the Linux kernel, the following vulnerability has been resolved:
sched/eevdf: Prevent vlag from going out of bounds in reweight_eevdf()
It was possible to have pick_eevdf() return NULL, which then causes a
NULL-deref. This turned out to be due to entity_eligible() returning
falsely negative because of a s64 multiplcation overflow.
Specifically, reweight_eevdf() computes the vlag without considering
the limit placed upon vlag as update_entity_lag() does, and then the
scaling multiplication (remember that weight is 20bit fixed point) can
overflow. This then leads to the new vruntime being weird which then
causes the above entity_eligible() to go side-ways and claim nothing
is eligible.
Thus limit the range of vlag accordingly.
All this was quite rare, but fatal when it does happen.
0
Attacker Value
Unknown
CVE-2024-35981
Disclosure Date: May 20, 2024 (last updated January 17, 2025)
In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Do not send RSS key if it is not supported
There is a bug when setting the RSS options in virtio_net that can break
the whole machine, getting the kernel into an infinite loop.
Running the following command in any QEMU virtual machine with virtionet
will reproduce this problem:
# ethtool -X eth0 hfunc toeplitz
This is how the problem happens:
1) ethtool_set_rxfh() calls virtnet_set_rxfh()
2) virtnet_set_rxfh() calls virtnet_commit_rss_command()
3) virtnet_commit_rss_command() populates 4 entries for the rss
scatter-gather
4) Since the command above does not have a key, then the last
scatter-gatter entry will be zeroed, since rss_key_size == 0.
sg_buf_size = vi->rss_key_size;
5) This buffer is passed to qemu, but qemu is not happy with a buffer
with zero length, and do the following in virtqueue_map_desc() (QEMU
function):
if (!sz) {
virtio_error(vdev, "virtio: zero sized buffers are…
0
Attacker Value
Unknown
CVE-2024-35980
Disclosure Date: May 20, 2024 (last updated January 17, 2025)
In the Linux kernel, the following vulnerability has been resolved:
arm64: tlb: Fix TLBI RANGE operand
KVM/arm64 relies on TLBI RANGE feature to flush TLBs when the dirty
pages are collected by VMM and the page table entries become write
protected during live migration. Unfortunately, the operand passed
to the TLBI RANGE instruction isn't correctly sorted out due to the
commit 117940aa6e5f ("KVM: arm64: Define kvm_tlb_flush_vmid_range()").
It leads to crash on the destination VM after live migration because
TLBs aren't flushed completely and some of the dirty pages are missed.
For example, I have a VM where 8GB memory is assigned, starting from
0x40000000 (1GB). Note that the host has 4KB as the base page size.
In the middile of migration, kvm_tlb_flush_vmid_range() is executed
to flush TLBs. It passes MAX_TLBI_RANGE_PAGES as the argument to
__kvm_tlb_flush_vmid_range() and __flush_s2_tlb_range_op(). SCALE#3
and NUM#31, corresponding to MAX_TLBI_RANGE_PAGES, isn't supported
by __TL…
0