Show filters
26 Total Results
Displaying 1-10 of 26
Sort by:
Attacker Value
Unknown
CVE-2024-25431
Disclosure Date: November 08, 2024 (last updated November 15, 2024)
An issue in bytecodealliance wasm-micro-runtime before v.b3f728c and fixed in commit 06df58f allows a remote attacker to escalate privileges via a crafted file to the check_was_abi_compatibility function.
0
Attacker Value
Unknown
CVE-2024-51756
Disclosure Date: November 05, 2024 (last updated January 05, 2025)
The cap-std project is organized around the eponymous `cap-std` crate, and develops libraries to make it easy to write capability-based code. cap-std's filesystem sandbox implementation on Windows blocks access to special device filenames such as "COM1", "COM2", "LPT0", "LPT1", and so on, however it did not block access to the special device filenames which use superscript digits, such as "COM¹", "COM²", "LPT⁰", "LPT¹", and so on. Untrusted filesystem paths could bypass the sandbox and access devices through those special device filenames with superscript digits, and through them provide access peripheral devices connected to the computer, or network resources mapped to those devices. This can include modems, printers, network printers, and any other device connected to a serial or parallel port, including emulated USB serial ports. The bug is fixed in #371, which is published in cap-primitives 3.4.1, cap-std 3.4.1, and cap-async-std 3.4.1. There are no known workarounds for this issu…
0
Attacker Value
Unknown
CVE-2024-51745
Disclosure Date: November 05, 2024 (last updated January 05, 2025)
Wasmtime is a fast and secure runtime for WebAssembly. Wasmtime's filesystem sandbox implementation on Windows blocks access to special device filenames such as "COM1", "COM2", "LPT0", "LPT1", and so on, however it did not block access to the special device filenames which use superscript digits, such as "COM¹", "COM²", "LPT⁰", "LPT¹", and so on. Untrusted Wasm programs that are given access to any filesystem directory could bypass the sandbox and access devices through those special device filenames with superscript digits, and through them gain access peripheral devices connected to the computer, or network resources mapped to those devices. This can include modems, printers, network printers, and any other device connected to a serial or parallel port, including emulated USB serial ports. Patch releases for Wasmtime have been issued as 24.0.2, 25.0.3, and 26.0.1. Users of Wasmtime 23.0.x and prior are recommended to upgrade to one of these patched versions. There are no known worka…
0
Attacker Value
Unknown
CVE-2024-47813
Disclosure Date: October 09, 2024 (last updated October 10, 2024)
Wasmtime is an open source runtime for WebAssembly. Under certain concurrent event orderings, a `wasmtime::Engine`'s internal type registry was susceptible to double-unregistration bugs due to a race condition, leading to panics and potentially type registry corruption. That registry corruption could, following an additional and particular sequence of concurrent events, lead to violations of WebAssembly's control-flow integrity (CFI) and type safety. Users that do not use `wasmtime::Engine` across multiple threads are not affected. Users that only create new modules across threads over time are additionally not affected. Reproducing this bug requires creating and dropping multiple type instances (such as `wasmtime::FuncType` or `wasmtime::ArrayType`) concurrently on multiple threads, where all types are associated with the same `wasmtime::Engine`. **Wasm guests cannot trigger this bug.** See the "References" section below for a list of Wasmtime types-related APIs that are affected. Wa…
0
Attacker Value
Unknown
CVE-2024-47763
Disclosure Date: October 09, 2024 (last updated October 10, 2024)
Wasmtime is an open source runtime for WebAssembly. Wasmtime's implementation of WebAssembly tail calls combined with stack traces can result in a runtime crash in certain WebAssembly modules. The runtime crash may be undefined behavior if Wasmtime was compiled with Rust 1.80 or prior. The runtime crash is a deterministic process abort when Wasmtime is compiled with Rust 1.81 and later. WebAssembly tail calls are a proposal which relatively recently reached stage 4 in the standardization process. Wasmtime first enabled support for tail calls by default in Wasmtime 21.0.0, although that release contained a bug where it was only on-by-default for some configurations. In Wasmtime 22.0.0 tail calls were enabled by default for all configurations. The specific crash happens when an exported function in a WebAssembly module (or component) performs a `return_call` (or `return_call_indirect` or `return_call_ref`) to an imported host function which captures a stack trace (for example, the host …
0
Attacker Value
Unknown
CVE-2024-43806
Disclosure Date: August 26, 2024 (last updated August 27, 2024)
Rustix is a set of safe Rust bindings to POSIX-ish APIs. When using `rustix::fs::Dir` using the `linux_raw` backend, it's possible for the iterator to "get stuck" when an IO error is encountered. Combined with a memory over-allocation issue in `rustix::fs::Dir::read_more`, this can cause quick and unbounded memory explosion (gigabytes in a few seconds if used on a hot path) and eventually lead to an OOM crash of the application. The symptoms were initially discovered in https://github.com/imsnif/bandwhich/issues/284. That post has lots of details of our investigation. Full details can be read on the GHSA-c827-hfw6-qwvm repo advisory. If a program tries to access a directory with its file descriptor after the file has been unlinked (or any other action that leaves the `Dir` iterator in the stuck state), and the implementation does not break after seeing an error, it can cause a memory explosion. As an example, Linux's various virtual file systems (e.g. `/proc`, `/sys`) can contain dire…
0
Attacker Value
Unknown
CVE-2024-30266
Disclosure Date: April 04, 2024 (last updated April 10, 2024)
wasmtime is a runtime for WebAssembly. The 19.0.0 release of Wasmtime contains a regression introduced during its development which can lead to a guest WebAssembly module causing a panic in the host runtime. A valid WebAssembly module, when executed at runtime, may cause this panic. This vulnerability has been patched in version 19.0.1.
0
Attacker Value
Unknown
CVE-2023-52284
Disclosure Date: December 31, 2023 (last updated January 09, 2024)
Bytecode Alliance wasm-micro-runtime (aka WebAssembly Micro Runtime or WAMR) before 1.3.0 can have an "double free or corruption" error for a valid WebAssembly module because push_pop_frame_ref_offset is mishandled.
0
Attacker Value
Unknown
CVE-2023-48105
Disclosure Date: November 22, 2023 (last updated December 01, 2023)
An heap overflow vulnerability was discovered in Bytecode alliance wasm-micro-runtime v.1.2.3 allows a remote attacker to cause a denial of service via the wasm_loader_prepare_bytecode function in core/iwasm/interpreter/wasm_loader.c.
0
Attacker Value
Unknown
CVE-2023-41880
Disclosure Date: September 15, 2023 (last updated October 08, 2023)
Wasmtime is a standalone runtime for WebAssembly. Wasmtime versions from 10.0.0 to versions 10.02, 11.0.2, and 12.0.1 contain a miscompilation of the WebAssembly `i64x2.shr_s` instruction on x86_64 platforms when the shift amount is a constant value that is larger than 32. Only x86_64 is affected so all other targets are not affected by this. The miscompilation results in the instruction producing an incorrect result, namely the low 32-bits of the second lane of the vector are derived from the low 32-bits of the second lane of the input vector instead of the high 32-bits. The primary impact of this issue is that any WebAssembly program using the `i64x2.shr_s` with a constant shift amount larger than 32 may produce an incorrect result.
This issue is not an escape from the WebAssembly sandbox. Execution of WebAssembly guest programs will still behave correctly with respect to memory sandboxing and isolation from the host. Wasmtime considers non-spec-compliant behavior as a security iss…
0