Show filters
154 Total Results
Displaying 31-40 of 154
Sort by:
Attacker Value
Unknown

CVE-2022-41972

Disclosure Date: December 16, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to 4.9 contain a NULL Pointer Dereference in BLE L2CAP module. The Contiki-NG operating system for IoT devices contains a Bluetooth Low Energy stack. An attacker can inject a packet in this stack, which causes the implementation to dereference a NULL pointer and triggers undefined behavior. More specifically, while processing the L2CAP protocol, the implementation maps an incoming channel ID to its metadata structure. In this structure, state information regarding credits is managed through calls to the function input_l2cap_credit in the module os/net/mac/ble/ble-l2cap.c. Unfortunately, the input_l2cap_credit function does not check that the metadata corresponding to the user-supplied channel ID actually exists, which can lead to the channel variable being set to NULL before a pointer dereferencing operation is performed. The vulnerability has been patched in the "develop" bra…
Attacker Value
Unknown

CVE-2022-41873

Disclosure Date: November 11, 2022 (last updated December 22, 2024)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to 4.9 are vulnerable to an Out-of-bounds read. While processing the L2CAP protocol, the Bluetooth Low Energy stack of Contiki-NG needs to map an incoming channel ID to its metadata structure. While looking up the corresponding channel structure in get_channel_for_cid (in os/net/mac/ble/ble-l2cap.c), a bounds check is performed on the incoming channel ID, which is meant to ensure that the channel ID does not exceed the maximum number of supported channels.However, an integer truncation issue leads to only the lowest byte of the channel ID to be checked, which leads to an incomplete out-of-bounds check. A crafted channel ID leads to out-of-bounds memory to be read and written with attacker-controlled data. The vulnerability has been patched in the "develop" branch of Contiki-NG, and will be included in release 4.9. As a workaround, Users can apply the patch in Contiki-NG pull r…
Attacker Value
Unknown

CVE-2022-36054

Disclosure Date: September 01, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. The 6LoWPAN implementation in the Contiki-NG operating system (file os/net/ipv6/sicslowpan.c) contains an input function that processes incoming packets and copies them into a packet buffer. Because of a missing length check in the input function, it is possible to write outside the packet buffer's boundary. The vulnerability can be exploited by anyone who has the possibility to send 6LoWPAN packets to a Contiki-NG system. In particular, the vulnerability is exposed when sending either of two types of 6LoWPAN packets: an unfragmented packet or the first fragment of a fragmented packet. If the packet is sufficiently large, a subsequent memory copy will cause an out-of-bounds write with data supplied by the attacker.
Attacker Value
Unknown

CVE-2022-36053

Disclosure Date: September 01, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. The low-power IPv6 network stack of Contiki-NG has a buffer module (os/net/ipv6/uipbuf.c) that processes IPv6 extension headers in incoming data packets. As part of this processing, the function uipbuf_get_next_header casts a pointer to a uip_ext_hdr structure into the packet buffer at different offsets where extension headers are expected to be found, and then reads from this structure. Because of a lack of bounds checking, the casting can be done so that the structure extends beyond the packet's end. Hence, with a carefully crafted packet, it is possible to cause the Contiki-NG system to read data outside the packet buffer. A patch that fixes the vulnerability is included in Contiki-NG 4.8.
Attacker Value
Unknown

CVE-2022-36052

Disclosure Date: September 01, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. The 6LoWPAN implementation in Contiki-NG may cast a UDP header structure at a certain offset in a packet buffer. The code does not check whether the packet buffer is large enough to fit a full UDP header structure from the offset where the casting is made. Hence, it is possible to cause an out-of-bounds read beyond the packet buffer. The problem affects anyone running devices with Contiki-NG versions previous to 4.8, and which may receive 6LoWPAN packets from external parties. The problem has been patched in Contiki-NG version 4.8.
Attacker Value
Unknown

CVE-2022-35927

Disclosure Date: August 04, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for IoT devices. In the RPL-Classic routing protocol implementation in the Contiki-NG operating system, an incoming DODAG Information Option (DIO) control message can contain a prefix information option with a length parameter. The value of the length parameter is not validated, however, and it is possible to cause a buffer overflow when copying the prefix in the set_ip_from_prefix function. This vulnerability affects anyone running a Contiki-NG version prior to 4.7 that can receive RPL DIO messages from external parties. To obtain a patched version, users should upgrade to Contiki-NG 4.7 or later. There are no workarounds for this issue.
Attacker Value
Unknown

CVE-2022-35926

Disclosure Date: August 04, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for IoT devices. Because of insufficient validation of IPv6 neighbor discovery options in Contiki-NG, attackers can send neighbor solicitation packets that trigger an out-of-bounds read. The problem exists in the module os/net/ipv6/uip-nd6.c, where memory read operations from the main packet buffer, <code>uip_buf</code>, are not checked if they go out of bounds. In particular, this problem can occur when attempting to read the 2-byte option header and the Source Link-Layer Address Option (SLLAO). This attack requires ipv6 be enabled for the network. The problem has been patched in the develop branch of Contiki-NG. The upcoming 4.8 release of Contiki-NG will include the patch.Users unable to upgrade may apply the patch in Contiki-NG PR #1654.
Attacker Value
Unknown

CVE-2021-32771

Disclosure Date: August 04, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for IoT devices. In affected versions it is possible to cause a buffer overflow when copying an IPv6 address prefix in the RPL-Classic implementation in Contiki-NG. In order to trigger the vulnerability, the Contiki-NG system must have joined an RPL DODAG. After that, an attacker can send a DAO packet with a Target option that contains a prefix length larger than 128 bits. The problem was fixed after the release of Contiki-NG 4.7. Users unable to upgrade may apply the patch in Contiki-NG PR #1615.
Attacker Value
Unknown

CVE-2020-12140

Disclosure Date: December 07, 2021 (last updated February 23, 2025)
A buffer overflow in os/net/mac/ble/ble-l2cap.c in the BLE stack in Contiki-NG 4.4 and earlier allows an attacker to execute arbitrary code via malicious L2CAP frames.
Attacker Value
Unknown

CVE-2021-36551

Disclosure Date: October 28, 2021 (last updated February 23, 2025)
TikiWiki v21.4 was discovered to contain a cross-site scripting (XSS) vulnerability in the component tiki-calendar.php. This vulnerability allows attackers to execute arbitrary web scripts or HTML via a crafted payload under the Add Event module.