Show filters
267 Total Results
Displaying 31-40 of 267
Sort by:
Attacker Value
Unknown
CVE-2023-2975
Disclosure Date: July 14, 2023 (last updated October 14, 2024)
Issue summary: The AES-SIV cipher implementation contains a bug that causes
it to ignore empty associated data entries which are unauthenticated as
a consequence.
Impact summary: Applications that use the AES-SIV algorithm and want to
authenticate empty data entries as associated data can be misled by removing,
adding or reordering such empty entries as these are ignored by the OpenSSL
implementation. We are currently unaware of any such applications.
The AES-SIV algorithm allows for authentication of multiple associated
data entries along with the encryption. To authenticate empty data the
application has to call EVP_EncryptUpdate() (or EVP_CipherUpdate()) with
NULL pointer as the output buffer and 0 as the input buffer length.
The AES-SIV implementation in OpenSSL just returns success for such a call
instead of performing the associated data authentication operation.
The empty data thus will not be authenticated.
As this issue does not affect non-empty associated data authenticat…
0
Attacker Value
Unknown
CVE-2023-2650
Disclosure Date: May 30, 2023 (last updated October 08, 2023)
Issue summary: Processing some specially crafted ASN.1 object identifiers or
data containing them may be very slow.
Impact summary: Applications that use OBJ_obj2txt() directly, or use any of
the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message
size limit may experience notable to very long delays when processing those
messages, which may lead to a Denial of Service.
An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers -
most of which have no size limit. OBJ_obj2txt() may be used to translate
an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL
type ASN1_OBJECT) to its canonical numeric text form, which are the
sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by
periods.
When one of the sub-identifiers in the OBJECT IDENTIFIER is very large
(these are sizes that are seen as absurdly large, taking up tens or hundreds
of KiBs), the translation to a decimal number in text may take a very long
time. …
0
Attacker Value
Unknown
CVE-2023-1255
Disclosure Date: April 20, 2023 (last updated October 08, 2023)
Issue summary: The AES-XTS cipher decryption implementation for 64 bit ARM
platform contains a bug that could cause it to read past the input buffer,
leading to a crash.
Impact summary: Applications that use the AES-XTS algorithm on the 64 bit ARM
platform can crash in rare circumstances. The AES-XTS algorithm is usually
used for disk encryption.
The AES-XTS cipher decryption implementation for 64 bit ARM platform will read
past the end of the ciphertext buffer if the ciphertext size is 4 mod 5 in 16
byte blocks, e.g. 144 bytes or 1024 bytes. If the memory after the ciphertext
buffer is unmapped, this will trigger a crash which results in a denial of
service.
If an attacker can control the size and location of the ciphertext buffer
being decrypted by an application using AES-XTS on 64 bit ARM, the
application is affected. This is fairly unlikely making this issue
a Low severity one.
0
Attacker Value
Unknown
CVE-2023-0466
Disclosure Date: March 28, 2023 (last updated October 08, 2023)
The function X509_VERIFY_PARAM_add0_policy() is documented to
implicitly enable the certificate policy check when doing certificate
verification. However the implementation of the function does not
enable the check which allows certificates with invalid or incorrect
policies to pass the certificate verification.
As suddenly enabling the policy check could break existing deployments it was
decided to keep the existing behavior of the X509_VERIFY_PARAM_add0_policy()
function.
Instead the applications that require OpenSSL to perform certificate
policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly
enable the policy check by calling X509_VERIFY_PARAM_set_flags() with
the X509_V_FLAG_POLICY_CHECK flag argument.
Certificate policy checks are disabled by default in OpenSSL and are not
commonly used by applications.
0
Attacker Value
Unknown
CVE-2023-0465
Disclosure Date: March 28, 2023 (last updated October 08, 2023)
Applications that use a non-default option when verifying certificates may be
vulnerable to an attack from a malicious CA to circumvent certain checks.
Invalid certificate policies in leaf certificates are silently ignored by
OpenSSL and other certificate policy checks are skipped for that certificate.
A malicious CA could use this to deliberately assert invalid certificate policies
in order to circumvent policy checking on the certificate altogether.
Policy processing is disabled by default but can be enabled by passing
the `-policy' argument to the command line utilities or by calling the
`X509_VERIFY_PARAM_set1_policies()' function.
0
Attacker Value
Unknown
CVE-2023-0464
Disclosure Date: March 22, 2023 (last updated October 08, 2023)
A security vulnerability has been identified in all supported versions
of OpenSSL related to the verification of X.509 certificate chains
that include policy constraints. Attackers may be able to exploit this
vulnerability by creating a malicious certificate chain that triggers
exponential use of computational resources, leading to a denial-of-service
(DoS) attack on affected systems.
Policy processing is disabled by default but can be enabled by passing
the `-policy' argument to the command line utilities or by calling the
`X509_VERIFY_PARAM_set1_policies()' function.
0
Attacker Value
Unknown
CVE-2022-4203
Disclosure Date: February 24, 2023 (last updated February 14, 2025)
A read buffer overrun can be triggered in X.509 certificate verification,
specifically in name constraint checking. Note that this occurs
after certificate chain signature verification and requires either a
CA to have signed the malicious certificate or for the application to
continue certificate verification despite failure to construct a path
to a trusted issuer.
The read buffer overrun might result in a crash which could lead to
a denial of service attack. In theory it could also result in the disclosure
of private memory contents (such as private keys, or sensitive plaintext)
although we are not aware of any working exploit leading to memory
contents disclosure as of the time of release of this advisory.
In a TLS client, this can be triggered by connecting to a malicious
server. In a TLS server, this can be triggered if the server requests
client authentication and a malicious client connects.
0
Attacker Value
Unknown
CVE-2023-0401
Disclosure Date: February 08, 2023 (last updated February 14, 2025)
A NULL pointer can be dereferenced when signatures are being
verified on PKCS7 signed or signedAndEnveloped data. In case the hash
algorithm used for the signature is known to the OpenSSL library but
the implementation of the hash algorithm is not available the digest
initialization will fail. There is a missing check for the return
value from the initialization function which later leads to invalid
usage of the digest API most likely leading to a crash.
The unavailability of an algorithm can be caused by using FIPS
enabled configuration of providers or more commonly by not loading
the legacy provider.
PKCS7 data is processed by the SMIME library calls and also by the
time stamp (TS) library calls. The TLS implementation in OpenSSL does
not call these functions however third party applications would be
affected if they call these functions to verify signatures on untrusted
data.
0
Attacker Value
Unknown
CVE-2023-0286
Disclosure Date: February 08, 2023 (last updated February 14, 2025)
There is a type confusion vulnerability relating to X.400 address processing
inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but
the public structure definition for GENERAL_NAME incorrectly specified the type
of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by
the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an
ASN1_STRING.
When CRL checking is enabled (i.e. the application sets the
X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass
arbitrary pointers to a memcmp call, enabling them to read memory contents or
enact a denial of service. In most cases, the attack requires the attacker to
provide both the certificate chain and CRL, neither of which need to have a
valid signature. If the attacker only controls one of these inputs, the other
input must already contain an X.400 address as a CRL distribution point, which
is uncommon. As such, this vulnerability is most likely to only affect
a…
0
Attacker Value
Unknown
CVE-2023-0217
Disclosure Date: February 08, 2023 (last updated February 14, 2025)
An invalid pointer dereference on read can be triggered when an
application tries to check a malformed DSA public key by the
EVP_PKEY_public_check() function. This will most likely lead
to an application crash. This function can be called on public
keys supplied from untrusted sources which could allow an attacker
to cause a denial of service attack.
The TLS implementation in OpenSSL does not call this function
but applications might call the function if there are additional
security requirements imposed by standards such as FIPS 140-3.
0