Show filters
61 Total Results
Displaying 11-20 of 61
Sort by:
Attacker Value
Unknown
CVE-2023-37281
Disclosure Date: September 15, 2023 (last updated October 08, 2023)
Contiki-NG is an operating system for internet-of-things devices. In versions 4.9 and prior, when processing the various IPv6 header fields during IPHC header decompression, Contiki-NG confirms the received packet buffer contains enough data as needed for that field. But no similar check is done before decompressing the IPv6 address. Therefore, up to 16 bytes can be read out of bounds on the line with the statement `memcpy(&ipaddr->u8[16 - postcount], iphc_ptr, postcount);`. The value of `postcount` depends on the address compression used in the received packet and can be controlled by the attacker. As a result, an attacker can inject a packet that causes an out-of-bound read. As of time of publication, a patched version is not available. As a workaround, one can apply the changes in Contiki-NG pull request #2509 to patch the system.
0
Attacker Value
Unknown
CVE-2023-34101
Disclosure Date: June 14, 2023 (last updated October 08, 2023)
Contiki-NG is an operating system for internet of things devices. In version 4.8 and prior, when processing ICMP DAO packets in the `dao_input_storing` function, the Contiki-NG OS does not verify that the packet buffer is big enough to contain the bytes it needs before accessing them. Up to 16 bytes can be read out of bounds in the `dao_input_storing` function. An attacker can truncate an ICMP packet so that it does not contain enough data, leading to an out-of-bounds read on these lines. The problem has been patched in the "develop" branch of Contiki-NG, and is expected to be included in release 4.9. As a workaround, one can apply the changes in Contiki-NG pull request #2435 to patch the system.
0
Attacker Value
Unknown
CVE-2023-34100
Disclosure Date: June 09, 2023 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for IoT devices. When reading the TCP MSS option value from an incoming packet, the Contiki-NG OS does not verify that certain buffer indices to read from are within the bounds of the IPv6 packet buffer, uip_buf. In particular, there is a 2-byte buffer read in the module os/net/ipv6/uip6.c. The buffer is indexed using 'UIP_IPTCPH_LEN + 2 + c' and 'UIP_IPTCPH_LEN + 3 + c', but the uip_buf buffer may not have enough data, resulting in a 2-byte read out of bounds. The problem has been patched in the "develop" branch of Contiki-NG, and is expected to be included in release 4.9. Users are advised to watch for the 4.9 release and to upgrade when it becomes available. There are no workarounds for this vulnerability aside from manually patching with the diff in commit `cde4e9839`.
0
Attacker Value
Unknown
CVE-2023-31129
Disclosure Date: May 08, 2023 (last updated October 08, 2023)
The Contiki-NG operating system versions 4.8 and prior can be triggered to dereference a NULL pointer in the message handling code for IPv6 router solicitiations. Contiki-NG contains an implementation of IPv6 Neighbor Discovery (ND) in the module `os/net/ipv6/uip-nd6.c`. The ND protocol includes a message type called Router Solicitation (RS), which is used to locate routers and update their address information via the SLLAO (Source Link-Layer Address Option). If the indicated source address changes, a given neighbor entry is set to the STALE state.
The message handler does not check for RS messages with an SLLAO that indicates a link-layer address change that a neighbor entry can actually be created for the indicated address. The resulting pointer is used without a check, leading to the dereference of a NULL pointer of type `uip_ds6_nbr_t`.
The problem has been patched in the `develop` branch of Contiki-NG, and will be included in the upcoming 4.9 release. As a workaround, users can…
0
Attacker Value
Unknown
CVE-2023-30546
Disclosure Date: April 26, 2023 (last updated October 08, 2023)
Contiki-NG is an operating system for Internet of Things devices. An off-by-one error can be triggered in the Antelope database management system in the Contiki-NG operating system in versions 4.8 and prior. The problem exists in the Contiki File System (CFS) backend for the storage of data (file os/storage/antelope/storage-cfs.c). In the functions `storage_get_index` and `storage_put_index`, a buffer for merging two strings is allocated with one byte less than the maximum size of the merged strings, causing subsequent function calls to the cfs_open function to read from memory beyond the buffer size. The vulnerability has been patched in the "develop" branch of Contiki-NG, and is expected to be included in the next release. As a workaround, the problem can be fixed by applying the patch in Contiki-NG pull request #2425.
0
Attacker Value
Unknown
CVE-2023-28116
Disclosure Date: March 17, 2023 (last updated November 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for internet of things (IoT) devices. In versions 4.8 and prior, an out-of-bounds write can occur in the BLE L2CAP module of the Contiki-NG operating system. The network stack of Contiki-NG uses a global buffer (packetbuf) for processing of packets, with the size of PACKETBUF_SIZE. In particular, when using the BLE L2CAP module with the default configuration, the PACKETBUF_SIZE value becomes larger then the actual size of the packetbuf. When large packets are processed by the L2CAP module, a buffer overflow can therefore occur when copying the packet data to the packetbuf. The vulnerability has been patched in the "develop" branch of Contiki-NG, and will be included in release 4.9. The problem can be worked around by applying the patch manually.
0
Attacker Value
Unknown
CVE-2023-23609
Disclosure Date: January 26, 2023 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to and including 4.8 are vulnerable to an out-of-bounds write that can occur in the BLE-L2CAP module. The Bluetooth Low Energy - Logical Link Control and Adaptation Layer Protocol (BLE-L2CAP) module handles fragmentation of packets up the configured MTU size. When fragments are reassembled, they are stored in a packet buffer of a configurable size, but there is no check to verify that the packet buffer is large enough to hold the reassembled packet. In Contiki-NG's default configuration, it is possible that an out-of-bounds write of up to 1152 bytes occurs. The vulnerability has been patched in the "develop" branch of Contiki-NG, and will be included in release 4.9. The problem can be fixed by applying the patch in Contiki-NG pull request #2254 prior to the release of version 4.9.
0
Attacker Value
Unknown
CVE-2022-41972
Disclosure Date: December 16, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to 4.9 contain a NULL Pointer Dereference in BLE L2CAP module. The Contiki-NG operating system for IoT devices contains a Bluetooth Low Energy stack. An attacker can inject a packet in this stack, which causes the implementation to dereference a NULL pointer and triggers undefined behavior. More specifically, while processing the L2CAP protocol, the implementation maps an incoming channel ID to its metadata structure. In this structure, state information regarding credits is managed through calls to the function input_l2cap_credit in the module os/net/mac/ble/ble-l2cap.c. Unfortunately, the input_l2cap_credit function does not check that the metadata corresponding to the user-supplied channel ID actually exists, which can lead to the channel variable being set to NULL before a pointer dereferencing operation is performed. The vulnerability has been patched in the "develop" bra…
0
Attacker Value
Unknown
CVE-2022-41873
Disclosure Date: November 11, 2022 (last updated December 22, 2024)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. Versions prior to 4.9 are vulnerable to an Out-of-bounds read. While processing the L2CAP protocol, the Bluetooth Low Energy stack of Contiki-NG needs to map an incoming channel ID to its metadata structure. While looking up the corresponding channel structure in get_channel_for_cid (in os/net/mac/ble/ble-l2cap.c), a bounds check is performed on the incoming channel ID, which is meant to ensure that the channel ID does not exceed the maximum number of supported channels.However, an integer truncation issue leads to only the lowest byte of the channel ID to be checked, which leads to an incomplete out-of-bounds check. A crafted channel ID leads to out-of-bounds memory to be read and written with attacker-controlled data. The vulnerability has been patched in the "develop" branch of Contiki-NG, and will be included in release 4.9. As a workaround, Users can apply the patch in Contiki-NG pull r…
0
Attacker Value
Unknown
CVE-2022-36054
Disclosure Date: September 01, 2022 (last updated October 08, 2023)
Contiki-NG is an open-source, cross-platform operating system for Next-Generation IoT devices. The 6LoWPAN implementation in the Contiki-NG operating system (file os/net/ipv6/sicslowpan.c) contains an input function that processes incoming packets and copies them into a packet buffer. Because of a missing length check in the input function, it is possible to write outside the packet buffer's boundary. The vulnerability can be exploited by anyone who has the possibility to send 6LoWPAN packets to a Contiki-NG system. In particular, the vulnerability is exposed when sending either of two types of 6LoWPAN packets: an unfragmented packet or the first fragment of a fragmented packet. If the packet is sufficiently large, a subsequent memory copy will cause an out-of-bounds write with data supplied by the attacker.
0