Show filters
68 Total Results
Displaying 11-20 of 68
Sort by:
Attacker Value
Unknown

CVE-2022-21723

Disclosure Date: January 27, 2022 (last updated November 29, 2024)
PJSIP is a free and open source multimedia communication library written in C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In versions 2.11.1 and prior, parsing an incoming SIP message that contains a malformed multipart can potentially cause out-of-bound read access. This issue affects all PJSIP users that accept SIP multipart. The patch is available as commit in the `master` branch. There are no known workarounds.
Attacker Value
Unknown

CVE-2021-37706

Disclosure Date: December 22, 2021 (last updated November 28, 2024)
PJSIP is a free and open source multimedia communication library written in C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In affected versions if the incoming STUN message contains an ERROR-CODE attribute, the header length is not checked before performing a subtraction operation, potentially resulting in an integer underflow scenario. This issue affects all users that use STUN. A malicious actor located within the victim’s network may forge and send a specially crafted UDP (STUN) message that could remotely execute arbitrary code on the victim’s machine. Users are advised to upgrade as soon as possible. There are no known workarounds.
Attacker Value
Unknown

CVE-2021-32558

Disclosure Date: July 30, 2021 (last updated February 23, 2025)
An issue was discovered in Sangoma Asterisk 13.x before 13.38.3, 16.x before 16.19.1, 17.x before 17.9.4, and 18.x before 18.5.1, and Certified Asterisk before 16.8-cert10. If the IAX2 channel driver receives a packet that contains an unsupported media format, a crash can occur.
Attacker Value
Unknown

CVE-2021-26713

Disclosure Date: February 19, 2021 (last updated February 22, 2025)
A stack-based buffer overflow in res_rtp_asterisk.c in Sangoma Asterisk before 16.16.1, 17.x before 17.9.2, and 18.x before 18.2.1 and Certified Asterisk before 16.8-cert6 allows an authenticated WebRTC client to cause an Asterisk crash by sending multiple hold/unhold requests in quick succession. This is caused by a signedness comparison mismatch.
Attacker Value
Unknown

CVE-2021-26712

Disclosure Date: February 18, 2021 (last updated February 22, 2025)
Incorrect access controls in res_srtp.c in Sangoma Asterisk 13.38.1, 16.16.0, 17.9.1, and 18.2.0 and Certified Asterisk 16.8-cert5 allow a remote unauthenticated attacker to prematurely terminate secure calls by replaying SRTP packets.
Attacker Value
Unknown

CVE-2021-26717

Disclosure Date: February 18, 2021 (last updated November 28, 2024)
An issue was discovered in Sangoma Asterisk 16.x before 16.16.1, 17.x before 17.9.2, and 18.x before 18.2.1 and Certified Asterisk before 16.8-cert6. When re-negotiating for T.38, if the initial remote response was delayed just enough, Asterisk would send both audio and T.38 in the SDP. If this happened, and the remote responded with a declined T.38 stream, then Asterisk would crash.
Attacker Value
Unknown

CVE-2021-26906

Disclosure Date: February 18, 2021 (last updated February 22, 2025)
An issue was discovered in res_pjsip_session.c in Digium Asterisk through 13.38.1; 14.x, 15.x, and 16.x through 16.16.0; 17.x through 17.9.1; and 18.x through 18.2.0, and Certified Asterisk through 16.8-cert5. An SDP negotiation vulnerability in PJSIP allows a remote server to potentially crash Asterisk by sending specific SIP responses that cause an SDP negotiation failure.
Attacker Value
Unknown

CVE-2020-28327

Disclosure Date: November 06, 2020 (last updated February 22, 2025)
A res_pjsip_session crash was discovered in Asterisk Open Source 13.x before 13.37.1, 16.x before 16.14.1, 17.x before 17.8.1, and 18.x before 18.0.1. and Certified Asterisk before 16.8-cert5. Upon receiving a new SIP Invite, Asterisk did not return the created dialog locked or referenced. This caused a gap between the creation of the dialog object, and its next use by the thread that created it. Depending on some off-nominal circumstances and timing, it was possible for another thread to free said dialog in this gap. Asterisk could then crash when the dialog object, or any of its dependent objects, were dereferenced or accessed next by the initial-creation thread. Note, however, that this crash can only occur when using a connection-oriented protocol (e.g., TCP or TLS, but not UDP) for SIP transport. Also, the remote client must be authenticated, or Asterisk must be configured for anonymous calling.
Attacker Value
Unknown

CVE-2020-28242

Disclosure Date: November 06, 2020 (last updated February 22, 2025)
An issue was discovered in Asterisk Open Source 13.x before 13.37.1, 16.x before 16.14.1, 17.x before 17.8.1, and 18.x before 18.0.1 and Certified Asterisk before 16.8-cert5. If Asterisk is challenged on an outbound INVITE and the nonce is changed in each response, Asterisk will continually send INVITEs in a loop. This causes Asterisk to consume more and more memory since the transaction will never terminate (even if the call is hung up), ultimately leading to a restart or shutdown of Asterisk. Outbound authentication must be configured on the endpoint for this to occur.
Attacker Value
Unknown

CVE-2019-18610

Disclosure Date: November 22, 2019 (last updated November 27, 2024)
An issue was discovered in manager.c in Sangoma Asterisk through 13.x, 16.x, 17.x and Certified Asterisk 13.21 through 13.21-cert4. A remote authenticated Asterisk Manager Interface (AMI) user without system authorization could use a specially crafted Originate AMI request to execute arbitrary system commands.