Show filters
6 Total Results
Displaying 1-6 of 6
Sort by:
Attacker Value
Unknown

CVE-2021-0268

Disclosure Date: April 14, 2021 (last updated February 22, 2025)
An Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response Splitting') weakness in J-web of Juniper Networks Junos OS leads to buffer overflows, segment faults, or other impacts, which allows an attacker to modify the integrity of the device and exfiltration information from the device without authentication. The weakness can be exploited to facilitate cross-site scripting (XSS), cookie manipulation (modifying session cookies, stealing cookies) and more. This weakness can also be exploited by directing a user to a seemingly legitimate link from the affected site. The attacker requires no special access or permissions to the device to carry out such attacks. This issue affects: Juniper Networks Junos OS: 18.1 versions prior to 18.1R3-S11; 18.2 versions prior to 18.2R3-S5; 18.3 versions prior to 18.3R2-S4, 18.3R3-S3; 18.4 versions prior to 18.4R2-S5, 18.4R3-S3; 19.1 versions prior to 19.1R2-S2, 19.1R3-S2; 19.2 versions prior to 19.2R1-S5, 19.2R2; 19.3 versions prior to…
Attacker Value
Unknown

CVE-2020-10753

Disclosure Date: June 26, 2020 (last updated February 21, 2025)
A flaw was found in the Red Hat Ceph Storage RadosGW (Ceph Object Gateway). The vulnerability is related to the injection of HTTP headers via a CORS ExposeHeader tag. The newline character in the ExposeHeader tag in the CORS configuration file generates a header injection in the response when the CORS request is made. Ceph versions 3.x and 4.x are vulnerable to this issue.
Attacker Value
Unknown

CVE-2020-5249

Disclosure Date: March 02, 2020 (last updated February 21, 2025)
In Puma (RubyGem) before 4.3.3 and 3.12.4, if an application using Puma allows untrusted input in an early-hints header, an attacker can use a carriage return character to end the header and inject malicious content, such as additional headers or an entirely new response body. This vulnerability is known as HTTP Response Splitting. While not an attack in itself, response splitting is a vector for several other attacks, such as cross-site scripting (XSS). This is related to CVE-2020-5247, which fixed this vulnerability but only for regular responses. This has been fixed in 4.3.3 and 3.12.4.
Attacker Value
Unknown

CVE-2020-5247

Disclosure Date: February 28, 2020 (last updated February 21, 2025)
In Puma (RubyGem) before 4.3.2 and before 3.12.3, if an application using Puma allows untrusted input in a response header, an attacker can use newline characters (i.e. `CR`, `LF` or`/r`, `/n`) to end the header and inject malicious content, such as additional headers or an entirely new response body. This vulnerability is known as HTTP Response Splitting. While not an attack in itself, response splitting is a vector for several other attacks, such as cross-site scripting (XSS). This is related to CVE-2019-16254, which fixed this vulnerability for the WEBrick Ruby web server. This has been fixed in versions 4.3.2 and 3.12.3 by checking all headers for line endings and rejecting headers with those characters.
Attacker Value
Unknown

Limited header injection when using dynamic overrides with user input in RubyGe…

Disclosure Date: January 23, 2020 (last updated February 21, 2025)
In Secure Headers (RubyGem secure_headers), a directive injection vulnerability is present in versions before 3.9.0, 5.2.0, and 6.3.0. If user-supplied input was passed into append/override_content_security_policy_directives, a newline could be injected leading to limited header injection. Upon seeing a newline in the header, rails will silently create a new Content-Security-Policy header with the remaining value of the original string. It will continue to create new headers for each newline. This has been fixed in 6.3.0, 5.2.0, and 3.9.0.
Attacker Value
Unknown

CVE-2020-3117

Disclosure Date: January 22, 2020 (last updated February 22, 2025)
A vulnerability in the API Framework of Cisco AsyncOS for Cisco Web Security Appliance (WSA) and Cisco Content Security Management Appliance (SMA) could allow an unauthenticated, remote attacker to inject crafted HTTP headers in the web server's response. The vulnerability is due to insufficient validation of user input. An attacker could exploit this vulnerability by persuading a user to access a crafted URL and receive a malicious HTTP response. A successful exploit could allow the attacker to inject arbitrary HTTP headers into valid HTTP responses sent to a user's browser.