Attacker Value
Unknown
(0 users assessed)
Exploitability
Unknown
(0 users assessed)
User Interaction
Unknown
Privileges Required
Unknown
Attack Vector
Unknown
0

CVE-2021-46989

Disclosure Date: February 28, 2024
Add MITRE ATT&CK tactics and techniques that apply to this CVE.

Description

In the Linux kernel, the following vulnerability has been resolved:

hfsplus: prevent corruption in shrinking truncate

I believe there are some issues introduced by commit 31651c607151
(“hfsplus: avoid deadlock on file truncation”)

HFS+ has extent records which always contains 8 extents. In case the
first extent record in catalog file gets full, new ones are allocated from
extents overflow file.

In case shrinking truncate happens to middle of an extent record which
locates in extents overflow file, the logic in hfsplus_file_truncate() was
changed so that call to hfs_brec_remove() is not guarded any more.

Right action would be just freeing the extents that exceed the new size
inside extent record by calling hfsplus_free_extents(), and then check if
the whole extent record should be removed. However since the guard
(blk_cnt > start) is now after the call to hfs_brec_remove(), this has
unfortunate effect that the last matching extent record is removed
unconditionally.

To reproduce this issue, create a file which has at least 10 extents, and
then perform shrinking truncate into middle of the last extent record, so
that the number of remaining extents is not under or divisible by 8. This
causes the last extent record (8 extents) to be removed totally instead of
truncating into middle of it. Thus this causes corruption, and lost data.

Fix for this is simply checking if the new truncated end is below the
start of this extent record, making it safe to remove the full extent
record. However call to hfs_brec_remove() can’t be moved to it’s previous
place since we’re dropping –>tree_lock and it can cause a race condition
and the cached info being invalidated possibly corrupting the node data.

Another issue is related to this one. When entering into the block
(blk_cnt > start) we are not holding the –>tree_lock. We break out from
the loop not holding the lock, but hfs_find_exit() does unlock it. Not
sure if it’s possible for someone else to take the lock under our feet,
but it can cause hard to debug errors and premature unlocking. Even if
there’s no real risk of it, the locking should still always be kept in
balance. Thus taking the lock now just before the check.

Add Assessment

No one has assessed this topic. Be the first to add your voice to the community.

CVSS V3 Severity and Metrics
Base Score:
None
Impact Score:
Unknown
Exploitability Score:
Unknown
Vector:
Unknown
Attack Vector (AV):
Unknown
Attack Complexity (AC):
Unknown
Privileges Required (PR):
Unknown
User Interaction (UI):
Unknown
Scope (S):
Unknown
Confidentiality (C):
Unknown
Integrity (I):
Unknown
Availability (A):
Unknown

General Information

Vendors

  • Linux

Products

  • Linux
Technical Analysis