Unknown
CVE-2024-26960
CVE ID
AttackerKB requires a CVE ID in order to pull vulnerability data and references from the CVE list and the National Vulnerability Database. If available, please supply below:
Add References:
Unknown
(0 users assessed)Unknown
(0 users assessed)Unknown
Unknown
Unknown
MITRE ATT&CK
Collection
Command and Control
Credential Access
Defense Evasion
Discovery
Execution
Exfiltration
Impact
Initial Access
Lateral Movement
Persistence
Privilege Escalation
Topic Tags
Description
In the Linux kernel, the following vulnerability has been resolved:
mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and
teardown a swap_info_struct while a call to free_swap_and_cache() was
running in another thread. This could cause, amongst other bad
possibilities, swap_page_trans_huge_swapped() (called by
free_swap_and_cache()) to access the freed memory for swap_map.
This is a theoretical problem and I haven’t been able to provoke it from a
test case. But there has been agreement based on code review that this is
possible (see link below).
Fix it by using get_swap_device()/put_swap_device(), which will stall
swapoff(). There was an extra check in _swap_info_get() to confirm that
the swap entry was not free. This isn’t present in get_swap_device()
because it doesn’t make sense in general due to the race between getting
the reference and swapoff. So I’ve added an equivalent check directly in
free_swap_and_cache().
Details of how to provoke one possible issue (thanks to David Hildenbrand
for deriving this):
—8<——-
__swap_entry_free() might be the last user and result in
“count == SWAP_HAS_CACHE”.
swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0.
So the question is: could someone reclaim the folio and turn
si->inuse_pages==0, before we completed swap_page_trans_huge_swapped().
Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are
still references by swap entries.
Process 1 still references subpage 0 via swap entry.
Process 2 still references subpage 1 via swap entry.
Process 1 quits. Calls free_swap_and_cache().
–> count == SWAP_HAS_CACHE
[then, preempted in the hypervisor etc.]
Process 2 quits. Calls free_swap_and_cache().
–> count == SWAP_HAS_CACHE
Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls
__try_to_reclaim_swap().
__try_to_reclaim_swap()–>folio_free_swap()–>delete_from_swap_cache()–>
put_swap_folio()–>free_swap_slot()–>swapcache_free_entries()–>
swap_entry_free()–>swap_range_free()–>
…
WRITE_ONCE(si->inuse_pages, si->inuse_pages – nr_entries);
What stops swapoff to succeed after process 2 reclaimed the swap cache
but before process1 finished its call to swap_page_trans_huge_swapped()?
—8<——-
Add Assessment
No one has assessed this topic. Be the first to add your voice to the community.
CVSS V3 Severity and Metrics
General Information
Vendors
- Linux
Products
- Linux
References
Miscellaneous
Additional Info
Technical Analysis
Report as Emergent Threat Response
Report as Exploited in the Wild
CVE ID
AttackerKB requires a CVE ID in order to pull vulnerability data and references from the CVE list and the National Vulnerability Database. If available, please supply below: