Attacker Value
Unknown
(0 users assessed)
Exploitability
Unknown
(0 users assessed)
User Interaction
None
Privileges Required
Low
Attack Vector
Local
0

CVE-2021-37654

Disclosure Date: August 12, 2021
Add MITRE ATT&CK tactics and techniques that apply to this CVE.

Description

TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a CHECK-fail in debug builds of TensorFlow using tf.raw_ops.ResourceGather or a read from outside the bounds of heap allocated data in the same API in a release build. The implementation does not check that the batch_dims value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of tensor, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

Add Assessment

No one has assessed this topic. Be the first to add your voice to the community.

CVSS V3 Severity and Metrics
Base Score:
7.1 High
Impact Score:
5.2
Exploitability Score:
1.8
Vector:
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H
Attack Vector (AV):
Local
Attack Complexity (AC):
Low
Privileges Required (PR):
Low
User Interaction (UI):
None
Scope (S):
Unchanged
Confidentiality (C):
High
Integrity (I):
None
Availability (A):
High

General Information

Additional Info

Technical Analysis