Show filters
17 Total Results
Displaying 1-10 of 17
Sort by:
Attacker Value
Unknown

CVE-2018-14618

Disclosure Date: September 05, 2018 (last updated November 27, 2024)
curl before version 7.61.1 is vulnerable to a buffer overrun in the NTLM authentication code. The internal function Curl_ntlm_core_mk_nt_hash multiplies the length of the password by two (SUM) to figure out how large temporary storage area to allocate from the heap. The length value is then subsequently used to iterate over the password and generate output into the allocated storage buffer. On systems with a 32 bit size_t, the math to calculate SUM triggers an integer overflow when the password length exceeds 2GB (2^31 bytes). This integer overflow usually causes a very small buffer to actually get allocated instead of the intended very huge one, making the use of that buffer end up in a heap buffer overflow. (This bug is almost identical to CVE-2017-8816.)
0
Attacker Value
Unknown

CVE-2018-1000007

Disclosure Date: January 24, 2018 (last updated November 26, 2024)
libcurl 7.1 through 7.57.0 might accidentally leak authentication data to third parties. When asked to send custom headers in its HTTP requests, libcurl will send that set of headers first to the host in the initial URL but also, if asked to follow redirects and a 30X HTTP response code is returned, to the host mentioned in URL in the `Location:` response header value. Sending the same set of headers to subsequent hosts is in particular a problem for applications that pass on custom `Authorization:` headers, as this header often contains privacy sensitive information or data that could allow others to impersonate the libcurl-using client's request.
Attacker Value
Unknown

CVE-2017-1000254

Disclosure Date: October 06, 2017 (last updated November 08, 2023)
libcurl may read outside of a heap allocated buffer when doing FTP. When libcurl connects to an FTP server and successfully logs in (anonymous or not), it asks the server for the current directory with the `PWD` command. The server then responds with a 257 response containing the path, inside double quotes. The returned path name is then kept by libcurl for subsequent uses. Due to a flaw in the string parser for this directory name, a directory name passed like this but without a closing double quote would lead to libcurl not adding a trailing NUL byte to the buffer holding the name. When libcurl would then later access the string, it could read beyond the allocated heap buffer and crash or wrongly access data beyond the buffer, thinking it was part of the path. A malicious server could abuse this fact and effectively prevent libcurl-based clients to work with it - the PWD command is always issued on new FTP connections and the mistake has a high chance of causing a segfault. The simp…
0
Attacker Value
Unknown

CVE-2017-1000101

Disclosure Date: October 05, 2017 (last updated November 26, 2024)
curl supports "globbing" of URLs, in which a user can pass a numerical range to have the tool iterate over those numbers to do a sequence of transfers. In the globbing function that parses the numerical range, there was an omission that made curl read a byte beyond the end of the URL if given a carefully crafted, or just wrongly written, URL. The URL is stored in a heap based buffer, so it could then be made to wrongly read something else instead of crashing. An example of a URL that triggers the flaw would be `http://ur%20[0-60000000000000000000`.
0
Attacker Value
Unknown

CVE-2017-1000100

Disclosure Date: October 05, 2017 (last updated November 26, 2024)
When doing a TFTP transfer and curl/libcurl is given a URL that contains a very long file name (longer than about 515 bytes), the file name is truncated to fit within the buffer boundaries, but the buffer size is still wrongly updated to use the untruncated length. This too large value is then used in the sendto() call, making curl attempt to send more data than what is actually put into the buffer. The endto() function will then read beyond the end of the heap based buffer. A malicious HTTP(S) server could redirect a vulnerable libcurl-using client to a crafted TFTP URL (if the client hasn't restricted which protocols it allows redirects to) and trick it to send private memory contents to a remote server over UDP. Limit curl's redirect protocols with --proto-redir and libcurl's with CURLOPT_REDIR_PROTOCOLS.
0
Attacker Value
Unknown

CVE-2016-3739

Disclosure Date: May 20, 2016 (last updated May 02, 2024)
The (1) mbed_connect_step1 function in lib/vtls/mbedtls.c and (2) polarssl_connect_step1 function in lib/vtls/polarssl.c in cURL and libcurl before 7.49.0, when using SSLv3 or making a TLS connection to a URL that uses a numerical IP address, allow remote attackers to spoof servers via an arbitrary valid certificate.
0
Attacker Value
Unknown

CVE-2015-3237

Disclosure Date: June 22, 2015 (last updated October 05, 2023)
The smb_request_state function in cURL and libcurl 7.40.0 through 7.42.1 allows remote SMB servers to obtain sensitive information from memory or cause a denial of service (out-of-bounds read and crash) via crafted length and offset values.
0
Attacker Value
Unknown

CVE-2015-3236

Disclosure Date: June 22, 2015 (last updated October 05, 2023)
cURL and libcurl 7.40.0 through 7.42.1 send the HTTP Basic authentication credentials for a previous connection when reusing a reset (curl_easy_reset) connection handle to send a request to the same host name, which allows remote attackers to obtain sensitive information via unspecified vectors.
0
Attacker Value
Unknown

CVE-2015-3144

Disclosure Date: April 24, 2015 (last updated October 05, 2023)
The fix_hostname function in cURL and libcurl 7.37.0 through 7.41.0 does not properly calculate an index, which allows remote attackers to cause a denial of service (out-of-bounds read or write and crash) or possibly have other unspecified impact via a zero-length host name, as demonstrated by "http://:80" and ":80."
0
Attacker Value
Unknown

CVE-2015-3143

Disclosure Date: April 24, 2015 (last updated October 05, 2023)
cURL and libcurl 7.10.6 through 7.41.0 does not properly re-use NTLM connections, which allows remote attackers to connect as other users via an unauthenticated request, a similar issue to CVE-2014-0015.
0