Show filters
146 Total Results
Displaying 21-30 of 146
Sort by:
Attacker Value
Unknown

CVE-2022-23457

Disclosure Date: April 25, 2022 (last updated October 07, 2023)
ESAPI (The OWASP Enterprise Security API) is a free, open source, web application security control library. Prior to version 2.3.0.0, the default implementation of `Validator.getValidDirectoryPath(String, String, File, boolean)` may incorrectly treat the tested input string as a child of the specified parent directory. This potentially could allow control-flow bypass checks to be defeated if an attack can specify the entire string representing the 'input' path. This vulnerability is patched in release 2.3.0.0 of ESAPI. As a workaround, it is possible to write one's own implementation of the Validator interface. However, maintainers do not recommend this.
Attacker Value
Unknown

CVE-2020-36518

Disclosure Date: March 11, 2022 (last updated November 29, 2024)
jackson-databind before 2.13.0 allows a Java StackOverflow exception and denial of service via a large depth of nested objects.
Attacker Value
Unknown

CVE-2021-4160

Disclosure Date: January 28, 2022 (last updated November 08, 2023)
There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For…
Attacker Value
Unknown

CVE-2021-38127

Disclosure Date: January 14, 2022 (last updated February 23, 2025)
Potential vulnerabilities have been identified in Micro Focus ArcSight Enterprise Security Manager, affecting versions 7.4.x and 7.5.x. The vulnerabilities could be remotely exploited resulting in Cross-Site Scripting (XSS).
Attacker Value
Unknown

CVE-2021-38126

Disclosure Date: January 14, 2022 (last updated February 23, 2025)
Potential vulnerabilities have been identified in Micro Focus ArcSight Enterprise Security Manager, affecting versions 7.4.x and 7.5.x. The vulnerabilities could be remotely exploited resulting in Cross-Site Scripting (XSS).
Attacker Value
Unknown

CVE-2021-45105

Disclosure Date: December 18, 2021 (last updated February 23, 2025)
Apache Log4j2 versions 2.0-alpha1 through 2.16.0 (excluding 2.12.3 and 2.3.1) did not protect from uncontrolled recursion from self-referential lookups. This allows an attacker with control over Thread Context Map data to cause a denial of service when a crafted string is interpreted. This issue was fixed in Log4j 2.17.0, 2.12.3, and 2.3.1.
Attacker Value
Unknown

CVE-2002-20001

Disclosure Date: November 11, 2021 (last updated February 23, 2025)
The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE.
Attacker Value
Unknown

CVE-2021-38124

Disclosure Date: September 28, 2021 (last updated February 23, 2025)
Remote Code Execution vulnerability in Micro Focus ArcSight Enterprise Security Manager (ESM) product, affecting versions 7.0.2 through 7.5. The vulnerability could be exploited resulting in remote code execution.
Attacker Value
Unknown

CVE-2021-3712

Disclosure Date: August 24, 2021 (last updated February 23, 2025)
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL termi…
Attacker Value
Unknown

CVE-2021-3711

Disclosure Date: August 24, 2021 (last updated February 23, 2025)
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data …